Darboux transformations and recursion operators for differential-difference equations
نویسندگان
چکیده
منابع مشابه
Symbolic Computation of Recursion Operators for Nonlinear Differential-Difference equations
An algorithm for the symbolic computation of recursion operators for systems of nonlinear differential-difference equations (DDEs) is presented. Recursion operators allow one to generate an infinite sequence of generalized symmetries. The existence of a recursion operator therefore guarantees the complete integrability of the DDE. The algorithm is based in part on the concept of dilation invari...
متن کاملCosymmetries and Nijenhuis recursion operators for difference equations
In this paper we discuss the concept of cosymmetries and co–recursion operators for difference equations and present a co–recursion operator for the Viallet equation. We also discover a new type of factorisation for the recursion operators of difference equations. This factorisation enables us to give an elegant proof that the recursion operator given in arXiv:1004.5346 is indeed a recursion op...
متن کاملSymbolic Computation of Conservation Laws, Generalized Symmetries, and Recursion Operators for Nonlinear Differential-Difference Equations
Algorithms for the symbolic computation of polynomial conservation laws, generalized symmetries, and recursion operators for systems of nonlinear differential-difference equations (DDEs) are presented. The algorithms can be used to test the complete integrability of nonlinear DDEs. The ubiquitous Toda lattice illustrates the steps of the algorithms, which have been implemented in Mathematica. T...
متن کاملSymbolic Computation of Polynomial Conserved Densities, Generalized Symmetries, and Recursion Operators for Nonlinear Differential-Difference Equations
Algorithms for the symbolic computation of polynomial conserved densities, fluxes, generalized symmetries, and recursion operators for systems of nonlinear differential-difference equations are presented. In the algorithms we use discrete versions of the Fréchet and variational derivatives, as well as discrete Euler and homotopy operators. The algorithms are illustrated for prototypical nonline...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical and Mathematical Physics
سال: 2013
ISSN: 0040-5779,1573-9333
DOI: 10.1007/s11232-013-0124-z